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Abstract A new rhodamine-based derivative bearing a
naphthyridine group (compound 1) was synthesized as a
colorimetric and fluorescent “off-on” chemosensor for
Cu2+ in aqueous solutions. The sensing behaviors of 1
toward various metal ions in neutral aqueous solutions
were investigated by absorption and fluorescence spec-
troscopies. Compound 1 is found to exhibit a significant
increase in absorbance at 561 nm and an amplified
fluorescence at 590 nm toward Cu2+ in a selective,
sensitive and rapid manner. The quantification of Cu2+

by 1 using an absorption spectroscopy method was
satisfactory in the linear working range 0.9–10 μM,
with a detection limit of 5.4×10−8M for Cu2+ and good
tolerance of other metal ions. Upon addition of Cu2+,
the spirolactam ring (colorless and nonfluorescent) of 1
was opened to ring-opened amide (red color and fluo-
rescent) and a 1:1 stoichiochemetry for the 1-Cu2+ com-
plex was formed with an association constant of 1.57×
104M−1.
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Introduction

The design and synthesis of new chemosensors for moni-
toring ionic species, especially heavy and transition metal
ions in aqueous solutions, is of great interest due to their
significance in chemical, biological, and environmental
analyses [1–3]. Cu2+ is an essential trace element in biolog-
ical systems [4]. However, under overloading conditions,
copper exhibits toxicity, because it causes neurodegenera-
tive diseases (e.g., Alzheimer’s and Wilson’s diseases) [5,
6]. Copper is also a significant metal pollutant due to its
widespread use. The toxicity of copper ions for humans is
rather low compared to other heavy metals, but certain
microorganisms are affected by low concentration of Cu2+

[7]. Therefore effort has been made to design and develop
probes for detection of Cu2+ in biological, toxicological and
environmental systems. Even though fluorescent probes for
copper ion have been extensively explored [8, 9], there is
still a demand for new fluorescent probes in the spectral
visible region, especially for “off-on” type fluorescent sen-
sors in aqueous systems, due to the fluorescence quenching
nature of paramagnetic Cu2+ [10].

Rhodamine-based dyes have been found applications in
complicated biological systems such as molecular probes
[11], and chemosensors [12, 13], due to their excellent spec-
troscopic properties of large molar extinction coefficient and
high fluorescence quantum yield, great photostability and
relatively long absorption wavelengths. The introduction of
the rhodamine skeletal to construct probes of the “off-on” type
is a reliable method due to the well-known spirolactam (“off”)
to ring-opened amide (“on”) equilibrium of rhodamine deriv-
atives. The spirolactam moiety of rhodamine served as a
signal switcher, which was observed to turn on when a metal
ion was bound. Addition of a specific metal ion to an appro-
priate rhodamine derivative bearing a spirolactam ring can
cause color change as well as fluorescent change of the
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receptor. Recently, the spirolactam forms for rhodamine deriv-
atives have been utilized for the detection of metal ions such
as Hg2+, Cu2+, Fe3+, Cr3+, Zn2+ and Pb2+ etc. in aqueous
solutions via ring-opening processes of spirolactam amides
or hydrazides [14–32].

Herein, a 1,8-naphthyridine group was introduced into the
rhodamine fluorophore (compound 1), which was utilized as a
selective colorimetric and fluorescent sensor for Cu2+ in aque-
ous solutions. 1,8-naphthyridine derivatives have been used as
rigid bidentate ligands [33]. Compound 1 is proposed to
chelate with Cu2+ via its carbonyl O, imino N, and
naphthyridinyl N atoms. The spectroscopic studies sug-
gested that 1 is a perspective colorimetric and fluorescent
chemosensor for Cu2+ with high selectivity and sensitivity
in aqueous solutions.

Experimental

General Apparatus and Experiments

NMR spectra were recorded with a 400 MHz Varian spec-
trometer. Electrospray ionization mass spectra (ESI-MS)
were measured on a micrOTOF-Q II system. Absorption
spectra were obtained on a TU1901 UV–visible spectropho-
tometer. The fluorescence spectra were measured with a
Cary Eclipse fluorescence spectrometer. The pH values
were measured with a pH S-3C pH meter.

The nitrates or chlorides of metal ions were used to
evaluate the metal ion binding property and selectivity of
1 in ethanol-Tris–HCl buffer (0.02 M, pH 7.2) (1:1, v/v).
Stock solutions of the metal ions (5 mM) were prepared in
deionized water. Stock solutions of 1 (1 mM) were prepared
in ethanol respectively. In titration experiments, 3 mL solu-
tion of 1, which was diluted to a certain concentration with
ethanol-Tris–HCl (0.02 M, pH 7.2) (1:1, v/v), was added
into a quartz optical cell with an optical path length of 1 cm.
The stock solution of each metal ion was added into the
quartz optical cell step by step via a syringe.

Synthesis of Spirolactam Rhodamine B Derivative 1

Compound 1 was synthesized by condensing rhodamine B
hydrazide [29] with N-(2-formyl-4-methyl-1,8-naphthyridin-

7-yl)acetamide referring the procedure [31] with some mod-
ifications (Scheme 1). 0.0913 g (0.2 mmol) rhodamine B
hydrazide and 0.0550 g (0.24 mmol) N-(2-formyl-4-methyl-
1,8-naphthyridin-7-yl)acetamide were dissolved in 25 ml of
anhydrous ethanol. The mixture was refluxed under N2 for
10 h. Then the solvent was removed in vacuo. The resulting
precipitate was purified by column chromatography on silica
gel with ethyl acetate/hexanes (1:8, v:v) to afford a yellow
solid of 0.072 g (yield 54 %). 1H NMR in DMSO-d6 (Fig. S1,
Supplementary material), δ (ppm): 1.05 (t, J07.2 Hz, 12H);
2.25 (s, 3H); 2.60 (s, 3H); 3.27–3.32 (m, 8H); 6.32–6.35 (m,
2H); 6.46–6.46 (m, 4H); 7.08 (d, J07.6 Hz, 1H); 7.57–7.66
(m, 3H); 7.98 (d, J07.2 Hz, 1H), 8.18 (s, 1H); 8.29 (d, J0
8.8 Hz, 1H); 8.44 (d, J08.8 Hz, 1H); 10.98 (s, 1H). 13C NMR
in DMSO-d6 (Fig. S2, Supplementary material), δ (ppm):
12.85, 14.54, 18.33, 21.22, 24.62, 44.10, 60.22, 65.44,
97.77, 104.85, 108.68, 120.35, 123.78, 124.29, 127.97,
129.35, 135.03, 144.82, 146.91, 149.17, 152.59, 152.78,
154.65, 154.84, 156.35, 164.75, 170.51, 170.81. MS (ESI-
MS): m/z calculated for [M+H]+, C40H41N7O3, 667.8. Found:
668.4, 690.3 [M+Na]+ (Fig. S3, Supplementary material).

The intermediate N-(2-formyl-4-methyl-1,8-naphthyri-
din-7-yl)acetamide was prepared as follows. 0.5 g
(2.89 mmol) 5,7-dimethyl-1,8-naphthyridin-2-amine in
9.5 mL acetic anhydride was refluxed for 40 min. After it
was cooled to 0 °C, 0.42 g 5,7-dimethyl-1,8-naphthyridin-2-
acetamide was obtained by filtration. Then 0.4 g
(1.86 mmol) 5,7-dimethyl-1,8-naphthyridin-2-acetamide
and 0.25 g (2.25 mmol) SeO2 in 50 mL 1,4-dioxane was
refluxed for 6 h. The hot mixture was filtered. Then the
filtrate was removed in vacuo. The crude product was
recrystallized with ethanol to give 3 gN-(2-formyl-4-meth-
yl-1,8-naphthyridin-7-yl)acetamide. 1H NMR(CDCl3) (Fig.
S4, Supplementary material): 2.34 (s, 3H), 2.81 (s, 3H), 7.89
(s, 1H), 8.47 (d, J08.8 Hz, 1H), 8.64 (s, 1H), 8.68 (d, J0
8.8 Hz, 1H), 10.22 (s, 1H).

Results and Discussion

Absorption Spectroscopic Studies

The absorption spectra of 1 upon titration of Cu2+ are shown
in Fig. 1. The solution of 1 without any metal ions is almost
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colorless and exhibits almost no absorption in the visi-
ble wavelength range (450–600 nm), indicating that 1 is
predominantly in the form of spirolactam. The charac-
teristic peak of the spiro-carbon of 1 near 65.4 ppm in
the 13C NMR spectrum also supports this consideration
[34] (Fig. S2). Free 1 displays absorption bands of
naphthyridine chromophore at 353 nm and 367 nm.
Upon addition of Cu2+, a new absorption peak at
561 nm and a new absorption shoulder in the wave-
length range (400–450 nm) appear. Figure 1 was basi-
cally dominated by the absorption bands that belong to
the rhodamine chromophore upon addition of Cu2+. The
absorbance at 561 nm and the shoulder increases grad-
ually with the increase of Cu2+ concentration, while the
peaks at 353 nm and 367 nm decrease. The absorbance
at 561 nm increases about 42 times upon addition of
one equivalent of Cu2+, suggesting the formation of the
ring-opened tautomer of the rhodamine chromophore
and the obvious interaction of Cu2+ and 1. There is a
concomitant isosbestic absorption point at 378 nm, in-
dicating the existence of only one intermediate complex
[35]. The shoulder in wavelength range (400–450 nm)
became prominent presumably due to the contribution
from the naphthyridine moiety in 1, with significant
bathochromic shift due to the Cu2+-binding. According-
ly, the titration solution exhibits an obvious and charac-
teristic color change from light yellow to red, indicating
that probe 1 can serve as a ‘naked-eye’ indicator for
Cu2+ ion. Job’s plot evaluated from the absorption spec-
tra of 1 and Cu2+ with a total concentration of 60 μM
(Fig. 2) according to the method for continuous varia-
tions [36] indicates that 1 binds with Cu2+ in a 1:1
stoichiometry. The stability constant of the complex

was calculated by the linear Benesi–Hildebrand expres-
sion (Eq. 1) [37]:

1

A� A0
¼ 1

Ka Amax � A0ð Þ Cu2þ½ � þ
1

Amax � A0
ð1Þ

where A0 is the absorbance of 1 at 561 nm without
Cu2+. A is the absorbance of 1 obtained with Cu2+. Amax

is the absorbance of 1 in the presence of excess amount
of Cu2+. Ka is the association constant. [Cu2+] is the
concentration of Cu2+. On the basis of the plot of 1/(A-
A0) and 1/[Cu2+], the association constant was deter-
mined from the slope to be 1.57×104M−1 (Insert in
Fig. 1). The absorbance of 1 at 561 nm increases
linearly with the increasing of Cu2+ concentration in
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Fig. 1 Absorption spectra of 1
(20 μmol/L) upon addition of
Cu2+ in ethanol-Tris–HCl
(0.02 mol/L, pH 7.2) (1:1, v/v)
solution. Insert: Benesi-
Hildebrand plot (absorbance at
561 nm) of 1 using Eq. 1, as-
suming 1:1 stoichiometry for
association between 1 and Cu2+
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Fig. 2 Job’s plot evaluated from the absorption spectra of 1 and Cu2+

at 561 nm in 6×10−5mol/L in ethanol-Tris–HCl (0.02 mol/L, pH 7.2)
(1:1, v/v) solution
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the range of 9×10−7–1×10−5mol/L (Fig. S5, Supplementary
material). The relationship between the absorbance at 561 nm
and Cu2+ concentration was: A02.32×104C-5.48×10−3, where
Awas the absorbance at 561 nm andCwas the concentration of
Cu2+ in mol/L with a correlation coefficient of R200.9988. The
detection limit, based on the definition by IUPACwas found to
be 5.4×10−8mol/L from 11 blank solutions.

The time course of the response of 20 μM 1 to 25 μMCu2+

in ethanol-Tris buffer (0.02 M, pH 7.2) (1:1, v/v) was inves-
tigated. The interaction of 1 with Cu2+ was completed in less
than 2 min (Fig. S6, Supplementary material). The acidity was
chosen to pH 7.2 because it is close to physiological pH
conditions. Both the organic compound and inorganic salts
must be dissolved in a suitable solvent. As ethanol is more
environmentally friendly and cheap than other water-soluble
solvents as acetone, acetonitrile, DMSO, DMF and THF, the
effect of ethanol fraction was investigated by using 10 %,
30%, 50%, 70% (v/v) in ethanol-Tris buffer (0.02M, pH 7.2)
for Cu2+ determination by 20 μM 1 (Fig. S7, Supplementary
material). 50% ethanol was found to efficiently monitor Cu2+.

Selectivity Studies

The selective sensory studies of 1 were then extended to other
metal ions. The changes in color of 20 μM 1 in presence of
different cations are illustrated in Fig. S8, Supplementary ma-
terial. Among the metal ions being investigated, 25.6 μMCu2+

can induce an obvious red color in 20 μM 1. 140 μM Fe3+ can

induce a faint pink color in 20 μM 1. 140 μMmetal ions such
as Pb2+, Mg2+, K+, Ni2+, Cd2+, Ag+, Mn2+, Zn2+, Hg2+, Co2+,
Fe2+ and Cr3+ cannot induce any color change of 20 μM 1. The
results indicate that 1 does not bind these metal ions. Spectro-
photometric responses of 20 μM 1 in ethanol-Tris buffer
(0.02 M, pH 7.2) (1:1, v/v) solutions to 140 μM various metal
ions and further to 25.6 μMCu2+ are shown in Fig. 3. Addition
of other tested metal ions such as Pb2+, Mg2+, K+, Ni2+, Cd2+,
Ag+, Mn2+, Zn2+, Hg2+, Co2+, Fe2+and Cr3+ with 7-fold can
not cause any apparent absorbance increase of 1 at
561 nm. Fe 3+ with 7-fold showed a slight increase
in absorbance of 1 at 561 nm. However, Fe 3+ induced
absorbance enhancement is far below that caused by
Cu2+ with 1.28-fold under the same conditions. Upon
addition of Cu2+ (25.6 μM) into 1 (20 μM) containing
interfering metal ions (140 μM for each), a significant
absorbance at 561 nm was determined. The results
indicated the tested metal ions with 7-fold that of
Cu2+ did not interfere with the interaction of 1 with Cu2+.

Recognition Mechanism

An evidence is obtained by determining the ESI mass spectra
of 1-Cu(II) in ethanol -Tris–HCl (0.02 M, pH 7.2) (1:1, v/v)
solution (Fig. S9, Supplementary material). The peak at (m/
z0731.3) for C40H41CuN7O3 (calcd 731.34) corresponding
to [1+Cu+H]+ is clearly observed when 30 μMCu2+ is added
to 20 μM 1, whereas 1without Cu2+ exhibited peaks at m/z0
668.4 (calcd 668.3) and 690.3 (calcd 690.3) which corre-
sponded to [1+H]+ and [M+Na]+, respectively (Fig. S3). To
achieve the 1:1 stoichiometry, carbonyl O, imino N, and
naphthyridinyl N atoms of 1 are the most possible binding
sites for Cu2+. The absorption spectra responses of 1 to Cu2+

were reversible, which was confirmed by the reversible
titration of 1-Cu2+ using ethylenediamine tetraacetic acid
disodium salt (EDTA) (Fig. S10, Supplementary material).
And the color of 1-Cu(II) disappeared instantly upon the
addition of 1-fold EDTA due to competitive binding of
Cu2+ from 1 by EDTA, moreover, further addition of
Cu2+ can recover the red color. Therefore the response of 1 to
Cu2+ is proposed to be a reversible recognition process rather
than an irreversible Cu2+-catalyzed reaction [29]. The pro-
posed mechanism is shown in Scheme 2.

Fig. 3 The absorbance of 1 (20 μM) at 561 nm in the presence of
140 μM different metal ions or 25.6 μM Cu2+ (blue bars), and upon
further addition of 25.6 μMCu2+. 1: no ions, 2: Zn2+, 3: Pb2+, 4: Hg2+, 5:
Ni2+, 6: Mn2+, 7: Cd2+, 8: Ag+, 9: Cr3+, 10: Cu2+, 11:Mg2+, 12: Co2+, 13:
K+, 14: Fe2+, 15: Fe3+
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recognition mechanism of 1 to
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Fluorescence Spectroscopic Studies

Highly selective probes for Cu2+, which give positive
responses rather than fluorescent quenching upon Cu2+

binding, are usually preferred to promote the sensitiv-
ity. From the fluorescence titration experiments
(Fig. 4), “off-on” fluorescence changes of 1 to Cu2+

were observed. Upon the addition of CuCl2 into the
ethanol -Tris–HCl (0.02 M, pH 7.2) (1:1, v/v) solution
of 1, a new emission band centered at 580 nm (with
an excitation wavelength at 520 nm) developed and
finally attained an equilibrium with the emission band
slightly red-shifted to 590 nm after 7 equiv of Cu2+ were
added. The typical emission peaks could be ascribed to the
Cu2+ induced ring-opening of the spirolactam moiety to
the delocalized xanthene moiety of the rhodamine group.
The red-shift of the emission peak can be ascribed to
the recombination of the orbitals after the formation of
ring-opened 1-Cu2+ complex. Plotting of 1/(I-I0) versus
1/[Cu2+] showed also a linear relationship (Fig. 5). The
fluorescence intensity at 590 nm has a 4.2-fold enhance-
ment, which is much weaker compared with the en-
hancement of the absorbance.

No significant fluorescence intensity change of 1
(20 μM) occurred in the presence of 140 μM metal
ions such as Pb2+, Mg2+, K+, Ni2+, Cd2+, Ag+, Mn2+,
Zn2+, Hg2+, Co2+, Fe2+, Fe3+ and Cr3+. In contrast,
upon the addition of Cu2+ (140 μM) into 1 (20 μM)
containing the interfering metal ions (140 μM for
each), a remarkable fluorescence intensity centered at
590 nm was observed (Fig. 6). These results indicated
that the recognition of Cu2+ by 1 is not obviously
interfered by other coexisting metal ions. Therefore, 1

exhibits a high selectivity toward Cu2+. It is likely that
there are several factors achieving the unique selectiv-
ity of 1 toward Cu2+, including the suitable coordina-
tion conformation of the chelating Schiff-based receptor
bearing a rigid and coplanar naphthyridine group, the
nitrogen and oxygen-affinities character of the Cu2+

and the radius of Cu2+.
The enhancement of absorbance is found to be much

more significant than that of fluorescence intensity
upon addition of Cu2+ to 1. However, the ring-
opening of the spirolactam form of rhodamine deriva-
tives generally results in comparable amplifications of
absorption and fluorescence signals [38]. Cu2+ does
open the spirolactam ring of 1, but at the same time
the fluorescence of the Cu(II) complex is probably
partially quenched by Cu2+ due to the paramagnetic
nature of the copper ion [39, 40].
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Fig. 4 Fluorescence spectra of 1 (20 μM) in ethanol -Tris–HCl
(0.02 M, pH 7.2) (1:1, v/v) solution upon addition of increasing
concentrations of CuCl2 with an excitation wavelength at 520 nm
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between 1 and Cu2+

Fig. 6 Fluorescence intensity of 1 (20 μM) 590 nm in the presence of
140 μM different metal ions (blue bars), and upon further addition of
140 μM Cu2+ (red bars). 1: no ions, 2: Cu2+, 3: Zn2+, 4: Pb2+, 5: Hg2+,
6: Ni2+, 7: Mn2+, 8: Cd2+, 9: Ag+, 10: Cr3+, 11: Mg2+, 12: Co2+, 13: K+,
14: Fe2+, 15: Fe3+
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Conclusions

A new spirolactam form of a rhodamine fluorophore
bearing a 1,8-naphthyridine group (1) has been synthe-
sized as a chemosensor for the recognition of copper
ion in aqueous solutions. This compound displays a
selective, sensitive absorbance change and amplified
fluorescence with rapid response to Cu2+ via a 1:1
binding mode. A reversible ring-open process of spi-
rolactam (off) to the delocalized hydrazone (on) pro-
cess are proposed in the spectroscopic response of 1
toward Cu2+.
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